عند حساب متوسط متحرك تشغيل، وضع متوسط في الفترة الزمنية الوسطى منطقي في المثال السابق قمنا بحساب متوسط الفترات الزمنية الأولى 3 ووضعه بجانب الفترة 3. كنا قد وضعت المتوسط في منتصف الفاصل الزمني من ثلاث فترات، وهذا هو، بجانب الفترة 2. وهذا يعمل بشكل جيد مع فترات زمنية فردية، ولكن ليست جيدة حتى لفترات زمنية حتى. إذا أين نضع المتوسط المتحرك الأول عند M4 من الناحية الفنية، فإن المتوسط المتحرك سينخفض عند t 2.5، 3.5. لتجنب هذه المشكلة نحن على نحو سلس على ماس باستخدام M 2. وهكذا نحن على نحو سلس القيم الملساء إذا كنا متوسط عدد حتى من المصطلحات، ونحن بحاجة إلى تسهيل السلس القيم ويبين الجدول التالي النتائج باستخدام M تنفيذ 4.Spreadsheet من التعديل الموسمية و الأسي تمهيد فمن مباشرة لأداء تعديل الموسمية وتناسب الأسي نماذج تمهيد باستخدام إكسيل. يتم أخذ صور الشاشة والرسوم البيانية أدناه من جدول بيانات تم إعداده لتوضيح التعديل الموسمي الموسمي والتجانس الأسي الخطي على بيانات المبيعات الفصلية التالية من أوتبوارد مارين: للحصول على نسخة من ملف جدول البيانات نفسه، انقر هنا. نسخة من التجانس الأسي الخطي التي سيتم استخدامها هنا لأغراض مظاهرة هو Brown8217s الإصدار، لمجرد أنه يمكن تنفيذها مع عمود واحد من الصيغ وهناك واحد فقط ثابت تمهيد لتحسين. عادة فمن الأفضل استخدام الإصدار Holt8217s التي لديها ثوابت تمهيد منفصلة للمستوى والاتجاه. وتنتقل عملية التنبؤ على النحو التالي: '1' أولا تعدل البيانات موسميا '2'، ثم تنشأ التنبؤات للبيانات المعدلة موسميا عن طريق التمهيد الأسي الخطي؛ '3' وأخيرا، فإن التنبؤات المعدلة موسميا هي عبارة عن تنبؤات متوقعة موسميا للحصول على تنبؤات للمسلسل الأصلي . يتم إجراء عملية التعديل الموسمية في الأعمدة من D إلى G. الخطوة الأولى في التعديل الموسمية هي حساب المتوسط المتحرك المركزة (يتم القيام به هنا في العمود D). ويمكن القيام بذلك عن طريق الأخذ بمتوسط متوسطين على مدى سنة واحدة تقابلهما فترة واحدة بالنسبة لبعضهما البعض. (وهناك حاجة إلى مزيج من متوسطين للمقاصة بدلا من متوسط واحد للأغراض المركزية عندما يكون عدد المواسم). والخطوة التالية هي حساب النسبة إلى المتوسط المتحرك - أي. البيانات الأصلية مقسومة على المتوسط المتحرك في كل فترة - والتي يتم تنفيذها هنا في العمود هاء (ويسمى هذا أيضا مكون كوتريند-سيكليكوت للنمط، بقدر ما يمكن اعتبار التأثيرات ودورات الأعمال على أنها كلها لا يزال بعد متوسطه على مدى سنوات كاملة من البيانات، وبطبيعة الحال، من شهر إلى آخر التغييرات التي لا تعود إلى الموسمية يمكن تحديدها من قبل العديد من العوامل الأخرى، ولكن متوسط 12 شهرا ينعم عليهم إلى حد كبير.) ذي يتم حساب المؤشر الموسمية المقدر لكل موسم من خلال متوسط متوسط جميع النسب لهذا الموسم المحدد، والذي يتم في الخلايا G3-G6 باستخدام صيغة أفيراجيف. ثم يتم تعديل النسب المتوسطة بحيث تصل إلى 100 مرة بالضبط عدد الفترات في الموسم، أو 400 في هذه الحالة، والذي يتم في الخلايا H3-H6. أسفل العمود F، يتم استخدام صيغ فلوكوب لإدراج قيمة الفهرس الموسمية المناسبة في كل صف من جداول البيانات، وفقا لربع السنة الذي يمثله. وينتهي المتوسط المتحرك المركب والبيانات المعدلة موسميا على النحو التالي: لاحظ أن المتوسط المتحرك يشبه عادة نسخة أكثر سلاسة من السلسلة المعدلة موسميا، وهو أقصر على كلا الطرفين. وتظهر ورقة عمل أخرى في نفس ملف إكسيل تطبيق نموذج تمهيد الأسي الخطي على البيانات المعدلة موسميا، بدءا من العمود G. وتدخل قيمة ثابت التمهيد (ألفا) فوق عمود التنبؤ (هنا في الخلية H9) و من أجل الراحة يتم تعيين اسم النطاق كوتAlpha. quot (يتم تعيين الاسم باستخدام الأمر كوتينسنامكراتيكوت). يتم تهيئة نموذج ليس عن طريق تعيين أول اثنين من التوقعات مساوية للقيمة الفعلية الأولى للسلسلة المعدلة موسميا. الصيغة المستخدمة هنا لتوقعات ليس هي النموذج المعادلة وحيد المعادلة من طراز Brown8217s: يتم إدخال هذه الصيغة في الخلية المقابلة للفترة الثالثة (هنا، الخلية H15) ونسخها من هناك. لاحظ أن توقعات ليس للفترة الحالية تشير إلى الملاحظات السابقة واثنين من أخطاء التنبؤ السابقة، فضلا عن قيمة ألفا. وهكذا، فإن صيغة التنبؤ الواردة في الصف 15 تشير فقط إلى البيانات التي كانت متاحة في الصف 14 وما قبله. (بطبيعة الحال، إذا أردنا استخدام تمهيد أسي بسيط بدلا من خطي أسي، يمكننا استبدال صيغة سيس هنا بدلا من ذلك، ويمكننا أيضا استخدام هولت 8217s بدلا من طراز براون 8217s ليس، والذي سيتطلب عمودين إضافيين من الصيغ لحساب المستوى والاتجاه التي تستخدم في التنبؤ.) وتحسب الأخطاء في العمود التالي (هنا، العمود J) بطرح التوقعات من القيم الفعلية. ويحسب خطأ متوسط الجذر التربيعي باعتباره الجذر التربيعي للتباين في الأخطاء بالإضافة إلى مربع الوسط. (ويأتي ذلك من الهوية الرياضية: مس فاريانس (أخطاء) (أفيراج (أخطاء))). في حساب متوسط وتفاوت الأخطاء في هذه الصيغة، يتم استبعاد الفترتين الأوليين لأن النموذج لا يبدأ فعلا التنبؤ حتى الفترة الثالثة (الصف 15 في جدول البيانات). يمكن العثور على القيمة المثلى ألفا إما عن طريق تغيير ألفا يدويا حتى يتم العثور على الحد الأدنى رمز، وإلا يمكنك استخدام كوتسولفيركوت لإجراء التقليل الدقيق. قيمة ألفا التي وجدت سولفر وجدت هنا (alpha0.471). وعادة ما تكون فكرة جيدة هي رسم أخطاء النموذج (في الوحدات المحولة)، وكذلك حساب ورسم مؤثراتهم الذاتية عند فترات تأخر تصل إلى موسم واحد. هنا هو مؤامرة سلسلة زمنية من الأخطاء (المعدلة موسميا): يتم حساب أوتوكوريلاتيونس خطأ باستخدام الدالة كوريل () لحساب الارتباطات من الأخطاء مع أنفسهم تأخرت بفترة واحدة أو أكثر - يتم عرض التفاصيل في نموذج جدول البيانات . هنا هو مؤامرة من أوتوكوريلاتيونس من الأخطاء في الفترات الخمسة الأولى: و أوتوكوريلاتيونس في الفترات من 1 إلى 3 قريبة جدا من الصفر، ولكن ارتفاع في تأخر 4 (الذي هو 0.35) هو مزعجة قليلا - فإنه يشير إلى أن عملية التعديل الموسمية لم تكن ناجحة تماما. ومع ذلك، فإنه في الواقع هامشية فقط. 95 لفحص ما إذا كانت أوتوكوريلاتيونس تختلف اختلافا كبيرا عن الصفر تقريبا زائدا أو ناقص 2SQRT (n-k)، حيث n هو حجم العينة و k هو الفارق الزمني. هنا n هو 38 و k يختلف من 1 إلى 5، وبالتالي فإن مربع الجذر من-ن-ناقص-ك حوالي 6 لجميع منهم، وبالتالي حدود لاختبار الأهمية الإحصائية للانحرافات من الصفر هي تقريبا زائد - أو ناقص 26، أو 0.33. إذا قمت بتغيير قيمة ألفا باليد في هذا النموذج إكسيل، يمكنك مراقبة تأثير على سلسلة زمنية ومؤامرات الارتباط الذاتي من الأخطاء، وكذلك على الخطأ الجذر متوسط التربيع، والتي سيتم توضيحها أدناه. في الجزء السفلي من جدول البيانات، يتم إعداد صيغة التنبؤات في المستقبل عن طريق استبدال التنبؤات بالقيم الفعلية فقط عند النقطة التي يتم فيها نفاد البيانات الفعلية. حيث تبدأ كوتوركوتلكوت. (وبعبارة أخرى، في كل خلية حيث تحدث قيمة بيانات مستقبلية، يتم إدراج مرجع الخلية الذي يشير إلى التوقعات التي تم إجراؤها لتلك الفترة.) يتم نسخ جميع الصيغ الأخرى ببساطة من أسفل: لاحظ أن الأخطاء للتنبؤات من يتم حساب كل المستقبل ليكون صفر. وهذا لا يعني أن الأخطاء الفعلية ستكون صفرا، بل إنها تعكس مجرد حقيقة أنه لأغراض التنبؤ، نفترض أن البيانات المستقبلية ستساوي التوقعات في المتوسط. وتظهر توقعات ليس على البيانات المعدلة موسميا على النحو التالي: مع هذه القيمة الخاصة ألفا، وهو الأمثل للتنبؤات قبل فترة واحدة، فإن الاتجاه المتوقع هو أعلى قليلا، مما يعكس الاتجاه المحلي الذي لوحظ على مدى العامين الماضيين أو هكذا. وبالنسبة لقيم ألفا الأخرى، يمكن الحصول على إسقاط اتجاه مختلف جدا. وعادة ما تكون فكرة جيدة لمعرفة ما يحدث لإسقاط الاتجاه على المدى الطويل عندما يكون ألفا متنوعا، لأن القيمة الأفضل للتنبؤ على المدى القصير لن تكون بالضرورة أفضل قيمة للتنبؤ بالمستقبل البعيد. على سبيل المثال، هنا هي النتيجة التي يتم الحصول عليها إذا تم تعيين قيمة ألفا يدويا إلى 0.25: الاتجاه المتوقع على المدى الطويل هو الآن سلبي بدلا من إيجابي مع قيمة أصغر من ألفا، نموذج يضع المزيد من الوزن على البيانات القديمة في وتقديراته للمستوى الحالي واتجاهه الحالي، وتنبؤاته الطويلة الأجل تعكس الاتجاه التنازلي الذي لوحظ خلال السنوات الخمس الماضية بدلا من الاتجاه التصاعدي الأحدث. ويوضح هذا المخطط أيضا بوضوح كيف أن النموذج مع قيمة أصغر من ألفا أبطأ للرد على نقاط كوتورنينغكوت في البيانات وبالتالي يميل إلى جعل خطأ من نفس علامة لعدة فترات متتالية. وأخطاء التنبؤ المتوقعة من خطوة واحدة أكبر في المتوسط من تلك التي تم الحصول عليها من قبل (رمز 34.4 بدلا من 27.4) وترتبط ارتباطا إيجابيا قويا. ويتجاوز الترابط الذاتي المتخلف 1،56 قيمة 0،33 المحسوبة أعلاه لانحراف ذي دلالة إحصائية عن الصفر. وكبديل لتخفيض قيمة ألفا من أجل إدخال مزيد من التحفظ في التنبؤات طويلة الأجل، يضاف أحيانا عامل التخميد المعتدل إلى النموذج من أجل جعل الاتجاه المتوقع يتسطح بعد بضع فترات. وتتمثل الخطوة الأخيرة في بناء نموذج التنبؤات في التنبؤ بالتنبؤات المتوقعة من خلال ضربها بالمؤشرات الموسمية المناسبة. ومن ثم فإن التنبؤات المعاد تشكيلها في العمود الأول هي ببساطة نتاج المؤشرات الموسمية في العمود F وتوقعات ليس الموضوعة موسميا في العمود ح. ومن السهل نسبيا حساب فترات الثقة للتنبؤات من خطوة واحدة إلى الأمام التي يقدمها هذا النموذج: أولا حساب رمز (الجذر متوسط مربع الخطأ، الذي هو مجرد الجذر التربيعي للمشاريع الصغيرة والمتوسطة) ومن ثم حساب فترة الثقة للتوقعات المعدلة موسميا عن طريق جمع وطرح مرتين من رمز. (عموما فاصل الثقة 95 للتنبؤ بفترة زمنية واحدة يساوي تقريبا نقطة التنبؤ زائد أو ناقص ضعف الانحراف المعياري المقدر لأخطاء التنبؤ، على افتراض أن توزيع الخطأ طبيعي تقريبا وحجم العينة هي كبيرة بما فيه الكفاية، ويقول 20 أو أكثر. هنا، رمزز بدلا من العينة الانحراف المعياري للأخطاء هو أفضل تقدير للانحراف المعياري للأخطاء التوقعات المستقبلية لأنه يأخذ التحيز وكذلك عشوائية الاختلافات في الاعتبار.) حدود الثقة من أجل التنبؤ المعدل موسميا ثم ريساوناليزد. إلى جانب التوقعات، بضربها بالمؤشرات الموسمية المناسبة. وفي هذه الحالة، يساوي الرمز رمز 27.4 والتوقعات المعدلة موسميا للفترة المقبلة الأولى (ديسمبر 93) هي 273.2. بحيث تكون فترة الثقة 95 المعدلة موسميا من 273.2-227.4 218.4 إلى 273.2227.4 328.0. مضاعفة هذه الحدود من قبل ديسمرس مؤشر موسمية من 68.61. نحصل على حدود أدنى وأعلى من الثقة 149.8 و 225.0 حول توقعات ديسمبر 93 نقطة من 187.4. ومن المتوقع أن تتسع حدود الثقة للتنبؤات بأكثر من فترة واحدة مع تزايد الأفق المتوقع بسبب عدم اليقين بشأن المستوى والاتجاه فضلا عن العوامل الموسمية، ولكن من الصعب حسابها عموما بطرائق تحليلية. (الطريقة المناسبة لحساب حدود الثقة لتوقعات ليس هي باستخدام نظرية أريما، ولكن عدم اليقين في المؤشرات الموسمية هو مسألة أخرى). إذا كنت ترغب في فترة ثقة واقعية للتنبؤ أكثر من فترة واحدة المقبلة، واتخاذ جميع مصادر في الاعتبار، أفضل رهان هو استخدام طرق تجريبية: على سبيل المثال، للحصول على فترة ثقة لتوقعات من خطوتين إلى الأمام، يمكنك إنشاء عمود آخر في جدول البيانات لحساب توقعات خطوة بخطوة لكل فترة ( من خلال بوتسترابينغ توقعات خطوة واحدة إلى الأمام). ثم حساب رمز لأخطاء التنبؤ المسبق من خطوتين واستخدامها كأساس لفاصل الثقة 2-ستيب قدما ..6.2 المتوسطات المتحركة ما 40 إليكساليس، الترتيب 5 41 في العمود الثاني من هذا الجدول، يكون المتوسط المتحرك من الترتيب 5، مما يوفر تقديرا لدورة الاتجاه. والقيمة الأولى في هذا العمود هي متوسط الملاحظات الخمس الأولى (1989-1993)، والقيمة الثانية في العمود 5-ما هي متوسط القيم 1990-1994 وهكذا. كل قيمة في العمود 5-ما هي متوسط الملاحظات في فترة الخمس سنوات التي تركز على السنة المقابلة. لا توجد قيم للسنتين الأوليين أو العامين الماضيين لأننا لا نملك ملاحظتين على أي من الجانبين. في الصيغة أعلاه، العمود 5-ما يحتوي على قيم قبعة مع k2. لمعرفة ما يبدو عليه تقدير دورة الاتجاه، فإننا نرسمه مع البيانات الأصلية في الشكل 6.7. مؤامرة 40 إليكساليس، الرئيسية سسيدكوتال الكهرباء السكنية، يلب كوغوكوت. زلاب كوتيركوت 41 لينس 40 ما 40 إليساليس، 5 41. كول كوتريدكوت 41 لاحظ كيف أن الاتجاه (باللون الأحمر) هو أكثر سلاسة من البيانات الأصلية ويلتقط الحركة الرئيسية للسلسلة الزمنية دون كل التقلبات الطفيفة. ولا تسمح طريقة المتوسط المتحرك بتقديرات T حيث تكون t قريبة من نهايات السلسلة، وبالتالي لا يمتد الخط الأحمر إلى حواف الرسم البياني على أي من الجانبين. في وقت لاحق سوف نستخدم أساليب أكثر تطورا لتقدير دورة الاتجاه التي تسمح التقديرات بالقرب من النهاية. ويحدد ترتيب المتوسط المتحرك مدى نعومة تقدير دورة الاتجاه. بشكل عام، يعني النظام الأكبر منحنى أكثر سلاسة. يوضح الرسم البياني التالي تأثير تغيير ترتيب المتوسط المتحرك لبيانات مبيعات الكهرباء السكنية. المتوسطات المتحركة البسيطة مثل هذه هي عادة من ترتيب فردي (على سبيل المثال 3، 5، 7، وما إلى ذلك) وهذا هو حتى أنها متماثلة: في المتوسط المتحرك للنظام m2k1، هناك k الملاحظات السابقة، k الملاحظات في وقت لاحق والمراقبة الوسطى التي يتم حساب متوسطها. ولكن إذا كان m حتى، فإنه لن يكون متماثلا. المتوسطات المتحركة للمتوسطات المتحركة من الممكن تطبيق متوسط متحرك على المتوسط المتحرك. أحد أسباب القيام بذلك هو جعل المتوسط المتحرك متساويا في الترتيب. على سبيل المثال، قد نأخذ متوسطا متحركا من الترتيب 4، ثم نطبق متوسط متحرك آخر للطلب 2 على النتائج. وفي الجدول 6-2، تم ذلك في السنوات القليلة الأولى من بيانات إنتاج البيرة الفصلية الاسترالية. ber2 lt - ويندو 40 أوسبير، ستارت 1992 41 ma4 lt - ما 40 beer2، أوردر 4. سينتر فالس 41 ma2x4 lt - ما 40 beer2، أوردر 4. سينتر ترو 41 الترميز 2times4-ما في العمود الأخير يعني 4-ما تليها 2-ما. يتم الحصول على القيم في العمود الأخير من خلال اتخاذ متوسط متحرك من الترتيب 2 من القيم في العمود السابق. على سبيل المثال، القيمتين الأوليين في العمود 4-ما هي 451.2 (443410420532) 4 و 448.8 (410420532433) 4. القيمة الأولى في العمود 2times4-ما هي متوسط هذين: 450.0 (451.2448.8) 2. عندما يتبع 2-ما المتوسط المتحرك حتى النظام (مثل 4)، ويسمى متوسط متحرك تركز على النظام 4. وذلك لأن النتائج هي الآن متماثل. لنرى أن هذا هو الحال، يمكننا كتابة 2times4-ما على النحو التالي: بدء قبعة أمبير فراك بيغفراك (y y y y) فراك (y y y y) كبير أمبير فراك y frac14y frac14y frac14y frac18y. نهاية هو الآن المتوسط المرجح للرصدات، ولكنه متماثل. ومن الممكن أيضا توليفات أخرى من المتوسطات المتحركة. على سبيل المثال يتم استخدام 3times3-ما غالبا، ويتكون من متوسط متحرك من النظام 3 متبوعا بمتوسط متحرك آخر من النظام 3. بشكل عام، يجب أن يتبع النظام حتى ما من قبل ما حتى أمر ما لجعلها متماثلة. وبالمثل، ينبغي أن يتبع أمر ما الفردية من قبل ما الفردية ترتيب فردي. تقدير دورة الاتجاه مع البيانات الموسمية الاستخدام الأكثر شيوعا للمتوسطات المتحركة المتمركزة هو في تقدير دورة الاتجاه من البيانات الموسمية. النظر في 2times4-ما: قبعة فراك y frac14y frac14y frac14y frac18y. عند تطبيقه على بيانات ربع سنوية، يعطى كل ربع سنة نفس الوزن حيث تطبق الفترة األولى واألخيرة على نفس الربع في السنوات المتعاقبة. وبناء على ذلك، سيتم حساب متوسط التغير الموسمية، كما أن القيم الناتجة عن هذه القيم لن تكون متبقية أو معدومة. ويمكن الحصول على تأثير مماثل باستخدام 2times 8-ما أو 2times 12-ما. وبوجه عام، فإن m 2 ما يعادل متوسط متحرك مرجح لترتيب m1 مع أخذ جميع الملاحظات 1m الوزن باستثناء المصطلحين الأول والأخير الذي يأخذ الأوزان 1 (2M). حتى إذا كانت الفترة الموسمية حتى و من أجل م، استخدم 2times م-ما لتقدير دورة الاتجاه. إذا كانت الفترة الموسمية غريبة وترتيب m، استخدم m-ما لتقدير دورة الاتجاه. على وجه الخصوص، يمكن استخدام 2 مرات 12-ما لتقدير دورة الاتجاه من البيانات الشهرية و 7-ما يمكن استخدامها لتقدير دورة الاتجاه من البيانات اليومية. ومن شأن الخيارات الأخرى لترتيب درجة الماجستير أن تؤدي عادة إلى تلوث تقديرات دورة الاتجاه بالموسمية في البيانات. مثال 6.2 تصنيع المعدات الكهربائية يبين الشكل 6.9 2 مرات 12-ما المطبقة على مؤشر أوامر المعدات الكهربائية. لاحظ أن الخط السلس لا يظهر موسمية وهو تقريبا نفس دورة الاتجاه هو مبين في الشكل 6.2 والتي تم تقديرها باستخدام طريقة أكثر تعقيدا بكثير من المتوسطات المتحركة. وأي خيار آخر لترتيب المتوسط المتحرك (باستثناء 24 و 36 وما إلى ذلك) قد يؤدي إلى خط سلس يظهر بعض التقلبات الموسمية. مؤامرة 40 إليسيكيب، يلاب كوت أوامر جديدة إندكسكوت. كول كوغرايكوت، الرئيسية تصنيع المعدات الكهربائية (منطقة اليورو) كوت 41 خطوط 40 أماه 40 إليسيكيب، النظام 12 41. كول كوريدكوت 41 المتوسطات المتحركة المرجح مجموعات من المتوسطات المتحركة تؤدي إلى المتوسطات المتحركة المرجح. على سبيل المثال، 2x4-ما ناقش أعلاه يعادل 5-ما المرجحة مع الأوزان التي قدمها فراك، فراك، فراك، فراك، فراك. وبصفة عامة، يمكن كتابة m-M المرجح كقيمة t k k a y y حيث k (m-1) 2 وتعطى الأوزان بواسطة النقاط والنقاط أك. من المهم أن الأوزان كل المبلغ إلى واحد وأنها متماثلة بحيث آج a. و M-ما بسيط هو حالة خاصة حيث جميع الأوزان تساوي 1M. والميزة الرئيسية للمتوسطات المتحركة المرجحة هي أنها تعطي تقديرا أكثر سلاسة لدورة الاتجاه. بدلا من الملاحظات دخول وترك الحساب بالوزن الكامل، يتم زيادة وزنها ببطء ثم انخفض ببطء مما أدى إلى منحنى أكثر سلاسة. وتستخدم على نطاق واسع بعض مجموعات محددة من الأوزان. وترد بعض هذه التوصيات في الجدول 6-3.
No comments:
Post a Comment